Math 103 Day 5: Derivatives

Ryan Blair

University of Pennsylvania
Thursday September 23, 2010

Outline

(1) Derivatives

Tangent Lines

Definition

The tangent line to a curve $y=f(x)$ at a point $(a, f(a))$ is the line through ($a, f(a))$ with the slope

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Tangent Lines

Definition

The tangent line to a curve $y=f(x)$ at a point $(a, f(a))$ is the line through $(a, f(a))$ with the slope

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Definition

(Alternative)The slope of the tangent line at $(a, f(a))$ is given by

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

ExampleSuppose a penny is dropped from the top of DRL which is 19.6 meters high. The position of the penny in terms of hight above the street is given by $s(t)=19.6-4.9 t^{2}$. At what speed is the penny traveling when it hits the ground.

Derivative

Definition

The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If the limit exists.

Derivative

Definition

The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If the limit exists.
Note.Another name for the derivative of f at a is the instantaneous rate of change of f at a.

Derivative as a function

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivative as a function

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notation.Other ways of writing the derivative of $y=f(x)$.

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Theorem
If f is differentiable at a, then f is continuous at a.

Theorem
If f is differentiable at a, then f is continuous at a.
To show f is continuous at a, we must show

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Theorem

If f is differentiable at a, then f is continuous at a.
To show f is continuous at a, we must show

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

However, using our limit laws, this is equivalent to showing

$$
\lim _{x \rightarrow a}(f(x)-f(a))=0
$$

Theorem

If f is differentiable at a, then f is continuous at a.

To prove the theorem we will assume

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

and we will show

$$
\lim _{x \rightarrow a}(f(x)-f(a))=0
$$

Higher Derivatives

If $y=f^{\prime}(x)$, then $\frac{d y}{d x}=f^{\prime \prime}(x)$
If $y=f^{\prime \prime}(x)$, then $\frac{d y}{d x}=f^{\prime \prime \prime}(x)$
If $y=f^{\prime \prime \prime}(x)$, then $\frac{d y}{d x}=f^{\prime \prime \prime \prime}(x)$
In general, the " n -th" derivative of $f(x)$ is denoted by $f^{(n)}(x)$.

